Identification of Iridoid Glucoside Transporters in Catharanthus roseus
نویسندگان
چکیده
منابع مشابه
The seco-iridoid pathway from Catharanthus roseus
The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availab...
متن کاملCorrigendum: The seco-iridoid pathway from Catharanthus roseus
While this Article was undergoing peer review, Salim et al. (2013), Asada et al. (2013) and Salim et al. (2014) published individual steps of the (seco)iridoid biosynthesis pathway in Catharanthus roseus, including the molecular and biochemical characterization of 7-deoxyloganic acid hydroxylase, 7-deoxyloganetic acid glucosyl transferase and 7-deoxyloganetic acid synthase, which are in agreeme...
متن کاملCharacterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis
Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol de...
متن کاملFunctional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus.
Sugar-sugar glycosyltransferases play an important role in structural diversity of small molecule glycosides in higher plants. We isolated a cDNA clone encoding a sugar-sugar glucosyltransferase (CaUGT3) catalyzing 1,6-glucosylation of flavonol and flavone glucosides for the first time from Catharanthus roseus. CaUGT3 exhibited a unique glucosyl chain elongation activity forming not only gentio...
متن کاملPurification and characterization of UDP-glucose : curcumin glucoside 1,6-glucosyltransferase from Catharanthus roseus cell suspension cultures.
Catharanthus roseus cell suspension cultures converted exogenously added curcumin to a series of curcumin glucosides that possessed drastically enhanced water solubility. A cDNA clone encoding a glucosyltransferase responsible for glucosylation of curcumin to form curcumin 4'-O-glucoside was previously isolated, and in the present study a novel sugar-sugar glycosyltransferase, UDP-glucose:curcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant and Cell Physiology
سال: 2017
ISSN: 0032-0781,1471-9053
DOI: 10.1093/pcp/pcx097